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Taste processing is an essential ability in all animals signaling po-
tential harm or benefit of ingestive behavior. However, current
evidence for cortical taste representations remains contradictory.
To address this issue, high-resolution functional MRI (fMRI) and
multivariate pattern analysis were used to characterize taste-
related informational content in human insular cortex, which
contains primary gustatory cortex. Human participants judged
pleasantness and intensity of low- and high-concentration tastes
(salty, sweet, sour, and bitter) in two fMRI experiments on two
different days to test for task- and concentration-invariant taste
representations. We observed patterns of fMRI activity within
insular cortex narrowly tuned to specific tastants consistently
across tasks in all participants. Fewer patterns responded to more
than one taste category. Importantly, changes in taste concentra-
tion altered the spatial layout of putative taste-specific patterns
with distinct, almost nonoverlapping patterns for each taste
category at different concentration levels. Together, our results
point at macroscopic representations in human insular cortex as a
complex function of taste category and concentration rather than
representations based solely on taste identity.
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In mammals, taste identification constitutes a critical ability to
ensure survival through selection of nutritional vs. potentially

harmful food. Although humans have developed a fine ability to
distinguish different tastes and taste compounds, it is yet unclear
how basic and mixed tastes are distinctively represented in the
gustatory cortex (GC).
Other sensory cortices are traditionally characterized by spe-

cific topological organizations of neurons arranged into spe-
cialized functional maps (e.g., orientation maps in the primary
visual cortex or tonotopic maps in the primary auditory cortex).
Hence, one might hypothesize that there is a functional map type
of organization (1) in chemosensory cortices as well, based on
basic taste categories. Yet, it still needs to be proven whether any
general topological principle applies to gustatory cortices (see
ref. 2 for olfaction).
Only recently have putative gustotopic maps been observed in

rodents (e.g., ref. 3). There, pools of neurons were characterized
by direct associations with specific taste qualities (salty, sweet,
bitter, and umami) within specialized subregions of mouse’s in-
sular cortex. In clear contradistinction, however, the majority of
animal studies reported overlapping clusters of neurons broadly
tuned to distinct tastes (e.g., ref. 4; for review see ref. 5). For
instance, Fletcher et al. (6) showed that neurons were prefer-
entially tuned to specific tastes or combination of tastes; none-
theless, such neurons were intermingled with neurons tuned to
different tastes, in line with the notion of a nontopological gus-
tatory organization in other species (for similar results in non-
human primates see, e.g., ref. 7).
In humans, to date, the organization of the GC remains poorly

understood. The putative human GC, located in anterior to middle

insula (8, 9), is inherently a multisensory area (10, 11) which
exhibits a wide range of responses not exclusively related to
gustatory stimuli (e.g., somatosensory and thermal responses).
This organization makes it particularly challenging to isolate
activity elicited by taste stimuli from other influences (e.g.,
somatosensory responses).
In accord with the vast majority of animal data, most population-

based* human imaging studies—though operating on a coarser
spatial scale than single-cell studies and two-photon-imaging,
which prevent direct comparability—have reported a scattered
organization of activated clusters broadly tuned to different taste
categories, with no actual evidence of dedicated taste-specific
maps (e.g., ref. 12). Only a few functional MRI (fMRI) studies
(13, 14) have reported taste-specific clusters of voxels which may
resemble a gustotopic type of organization. However, both
studies were penalized by small sample sizes, passive tasting (i.e.,
lack of task), and constant intensity per taste. The latter two
points strongly limit the generalizability of these findings as in-
tensity variations can dramatically alter macroscopic responses
to tastes (12, 15, 16), as can the task at hand (17, 18). Moreover,
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previous studies have relied exclusively on mass-univariate
analyses, whereby a statistical model is fit to each voxel in-
dependently, thus failing to capture information uniquely carried
by patterns of activity across neighboring voxels. To overcome
this impasse, Crouzet et al. (19) used a multivariate approach
with electrophysiological data to explore the temporal profile of
taste processing; more recently, Chikazoe et al. (20) adopted a
multivariate approach to classify patterns of fMRI signals to basic
taste categories as well as different chemical compounds of the
same taste categories. While these authors were able to identify
common patterns of activities in the insular cortex associated with
basic taste qualities, irrespective of chemical compounds, the lack
of variation in tastant concentration and task compromises the
conclusion that a taste-specific map indeed exists. Moreover, the
absence of an adequate measure to quantify the selectivity of
specific patterns for particular taste categories further impairs
their interpretation. Hence, the aim of the present study was to
test for a general gustotopic organization and, more specifically, to
provide a comprehensive characterization of the human GC as a
function of 1) taste quality (bitter, salty, sweet, or sour), 2) taste
concentration (high or low), and 3) task (pleasantness and in-
tensity judgments). To this end, 24 participants were tested in two
fMRI experiments in which we administered four basic taste
categories at two different concentrations plus an additional neu-
tral compound. Participants judged intensity in one experiment
and pleasantness in the other experiment. Crucially, a spatially
constrained classifier (searchlight approach) was trained on data
of the first experiment and tested on the second experiment, and
vice versa, to identify common, task-independent yet taste-specific
representations. Moreover, taste-specific tuning functions were
calculated for each searchlight to address the issue of narrow vs.
wide taste-specific tuning functions in human insular cortex. Fi-
nally, across- and within-concentration classification analyses were
used to assess the influence of concentration on taste-specific
representations.

Results
Behavior. Participants were able to correctly perceive taste
identity in the majority of all cases (SI Appendix, Fig. S1 A and
B). Moreover, they rated taste valence differently depending on
taste concentration and taste identity, as testified by the signifi-
cant interaction [F(4, 23) = 3.028, P = 0.0186; η2 = 0.030], with
sweet always showing significantly enhanced and bitter showing
significantly decreased ratings compared to neutral (see SI Ap-
pendix, Table S1 and Fig. S1C for details). Concerning the in-
tensity judgments, participants perceived a consistent difference
in intensity between high and low concentrations, as expected
[main effect of intensity: F(1, 23) = 34.398, P < 0.001; η2 =
0.181]. Moreover, a main effect of taste identity was observed
[F(4, 23) = 9.810, P < 0.001; η2 = 0.280], while the interaction
between intensity and taste identity did not reach significance
[F(4, 23) = 2.237, P > 0.05; η2 = 0.048; see SI Appendix, Table S1
and Fig. S1D for details].

Neural Underpinnings. The central focus of this study was to
characterize the functional organization of putative GC, and thus
left and right insular cortex were targeted by means of regions of
interest (ROIs) derived from independent functional parcella-
tion of the insula (21). Since the exact location of human GC is
still debated (see, e.g., ref. 8), several definitions of human GC
within subfields of the insula have been proposed (e.g., refs. 21
and 22) which are not always consistent. Therefore, we placed
additional results based on different human GC definitions in SI
Appendix, Figs. S2 and S3 and Tables S2 and S3 but show the
unbiased results covering the whole insula (which contains GC)
in the main text. Moreover, we overlaid the subfields which may
contain human GC based on combined resting-state , diffusion-tensor
imaging, and functional labeling results (21) on the functional results

(see yellow outlines in Figs. 1 and 4 and see SI Appendix, Figs. S2
and S3 for another definition of GC [note again that below we
report results for the whole insula to avoid unduly biasing the
results]).
Sparse multinomial logistic regression (23) was used to train

and test, in turn, on the first experiment and second experiment
through a searchlight approach (24).

Cross-Experiment Decoding. First, we isolated fMRI patterns as-
sociated with taste categories. Given previous reports on the
influence of taste concentration on fMRI signals (e.g., ref. 16),
separate classifications were calculated for high and low in-
tensities. These critical comparisons will unveil task-invariant yet
single or multiple taste-preferring patterns if present.
High concentration. Classification among high-concentration tastes
revealed patterns of spheres for all four taste categories which
were successfully decoded across the two experiments (Fig. 1A,
Right). For this analysis, we first estimated probabilities (rather
than accuracies) to quantify the selectivity of each searchlight
sphere for a given taste quality. This set of probabilities provides
a continuous multidimensional measure describing the selectivity
of each searchlight sphere (one probability for each taste) rather
than a “winner-take-all” accuracy measure (25). After initial
classification, we then estimated evidence ratios (ERs) by con-
trasting correct classifications with false positives (i.e., higher
probability of a particular taste when another taste was pre-
sented; see Fig. 1A for significant ER maps, p[cluster] < 0.05,
familywise error rate [FWE]-corrected, with an auxiliary threshold
of p[voxel] < 0.001). Statistical maps of ER were subsequently
used to assess the selectivity of each sphere, based on a tuning
index. In particular, tuning indices (range 0 to 1) were computed
based on the ER for a particular taste relative to the highest ev-
idence for all other tastes. Indices larger than 0.5 indicate an
increasingly narrow tuning for a specific taste category (see
Methods for further details). Together, our results provide ev-
idence for a consistent narrow selectivity for all taste categories
across experiments, that is, independent of task (see Fig. 1B for
tuning maps).
Moreover, the number of spheres narrowly tuned to one

particular taste varied, with bitter showing consistent effects in
∼4.3% of insular spheres and salty in ∼3.5% of insular spheres,
while sweet and sour registered ∼2.8% and ∼1.8%, respectively.
Similar sphere counts were obtained in both left and right insula.
Next, we tested for spheres broadly tuned to more than one taste.
However, virtually none of the clusters coding a combination of
two or three tastes survived the selection criteria.
To confirm at the single-subject level that these sphere-based

observations are not simply due to large interindividual differ-
ences in topologies due to group-mean voxel-based averaging
(13, 14), we next tested for differential effects of taste category
based on single-subject results (see Fig. 1C for tuning maps of an
illustrative subject). Here, 8.89% (median ± 1.2% SE), 8.40% ±
1.2%, 8.38% ± 1.2%, and 6.75% ± 1.1% of insular spheres av-
eraged over hemispheres responded to salty, bitter, sweet, and
sour, respectively (see Fig. 2A, top column for scatter plots of all
individual taste categories; see also SI Appendix, Fig. S2, second
row and SI Appendix, Tables S2 and S3, top).
All subjects expressed taste-selective spheres for all tastants

(see SI Appendix, Table S4, top). No significant differences in
sphere count were observed for hemisphere, taste category, or
their interaction (Ps = 0.4 and higher), mirroring the group-level
results (although note that subject-specific sphere counts are
higher than group-level counts, indicating increased sensitivity).
Moreover, the number of spheres was not related to perceived
intensity or pleasantness for any taste (P ≥ 0.424, Bonferroni-
corrected). Finally, lower counts were found for two-taste–
(0.5% ± 0.3%) and three-taste–preferring spheres (see Fig. 2A,
middle and bottom columns); more than half of the subjects did
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not show any significant three-taste–preferring clusters (see also
SI Appendix, Table S4). No significant differences across hemi-
spheres or taste category were observed for the double or triple-
tuned spheres, confirming the pattern observed at the group
level. When further restricting the analysis to putative GC within
the insula (SI Appendix, Fig. S2) the number of subjects exhib-
iting spheres tuned to two tastes dropped drastically compared to
the analysis of the whole insula, whereas spheres tuned to single
tastes were found in all (SI Appendix, Table S3, top) or more
than 87% of all subjects (SI Appendix, Table S2, top) depending
on the exact definition of GC. In contrast, ∼45% of subjects did
on average not show any spheres tuned to two tastes and over
85% did not show any response to three tastes in any sphere (SI
Appendix, Tables S2 and S3).
Low concentration. As a second critical comparison, we tested for
task-invariant taste-specific patterns at low concentration. Fig.
1A, Left depicts significant clusters of ER maps for each taste
category for the low-concentration stimuli. As for high-concentration
maps, we again observed task-invariant yet taste-selective clus-
ters for all four tastes (Fig. 1B). Overall cluster sizes were
comparable to those observed for the high-concentration con-
ditions at the group level. In particular, the subjects-specific
sphere count for the low-concentration conditions revealed an
increase in insular spheres tuned to sweet (∼4.7%), while bitter
(∼2.3%), salty (∼0.7%), and sour (∼1.5%) preferences slightly
decreased relative to high-concentration spheres. As for the high
concentration, virtually none of the clusters were tuned to more

than one taste category. Again, confirmatory analyses of single-
subject results corroborated the group-level results (Fig. 2B),
with higher counts for single-taste–preferring spheres (bitter:
8.27% ± 1.0; salty: 6.88% ± 0.9; sour: 7.47% ± 1.0; sweet:
9.68% ± 1.3) than two- and three-taste–preferring spheres (see
also SI Appendix, Table S4).
Moreover, subjective intensity or pleasantness ratings were

again not related to subject-specific sphere counts for any taste
category (P ≥ 0.512, Bonferroni-corrected). Together, the find-
ings for both concentration levels reveal that there are consistent
taste-preference clusters in the insula and that most taste-
sensitive spheres expressed a preferential tuning to one taste
only. As observed for high concentration, when restricting the
analysis to putative GC the number of participants exhibiting
spheres tuned to two tastes dropped drastically compared to the
whole insula, whereas spheres tuned to single tastes were found
in ∼96% (SI Appendix, Table S3, top) or more than 93% of all
subjects (SI Appendix, Table S2, top) depending on the exact
definition of GC. In contrast, ∼46% (or over 50% depending on
the exact definition of GC) of the subjects did on average not
show spheres tuned to two tastes and ∼90% did not show any
response to three tastes in any sphere (SI Appendix, Tables S2
and S3).
However, these analyses above were independent from each

other and thus cannot answer the critical question of whether the
observed task-independent taste-specific subregions were also
independent of taste concentration.
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Right InsulaLeft Insula

Tuning Index maps

Evidence ratio maps

nsula Left

Evidence ratio maps
Evidence Ratio
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Sweet
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Salty

Sweet
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Tuning Index

Fig. 1. Cross-experiment taste maps. (A) Flat maps depict significant clusters of ERs (cluster-thresholded at pFWE <0.05 with an auxiliary voxel threshold of P <
0.001) in insular cortex at the group level, obtained through cross-experiment decoding. Plots were created by projecting three-dimensional brain voxels onto
a two-dimensional surface via Nilearn 0.5.0 (40) and subsequently plotting the brain surfaces by using Visbrain 0.4.0 (45). Note that ERs for particular tastes
can and do overlap as ERs represent reliability of our classification independently for each taste category. (B) Tuning maps depict spheres narrowly tuned to
single tastes at the group level (thresholded at >0.5). (C) Tuning maps for an illustrative subject. The information provided by group-level maps may be
misleading given the extreme variability of the insula’s functional microstructure (13, 14). Single-subject maps exhibit a stronger degree of spatial continuity
for specific taste categories than the group-level maps. Left columns always represent low concentration tastes, and right columns represent high concen-
tration tastes. Yellow lines depict GC as defined by Fan et al. (21); see SI Appendix, Figs. S2 and S3 for further information.
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High vs. Low Concentrations. The most critical comparison there-
fore tested whether the observed task-independent clusters were
also not affected by stimulus concentration. For this direct fine-
grained analysis of the relationship between high and low con-
centration maps, we quantified the amount of overlap between
high- and low-concentration maps for both group and single-
subjects maps for all taste categories. Specifically, we counted
the number of spheres coactive in low- and high-concentration
tuning maps and we then computed the ratio between the
number of coactive spheres using geometric mean between the
two compared cluster sizes. Geometric averaging was adopted to
account for the overall different size of the clusters of interest.
Otherwise, the chance to observe high or low overlap might have
been biased by the relative size of each cluster (e.g., two bigger
clusters would have had a higher probability to share common
spheres than two small clusters). This procedure provided a
continuous index of overlap ranging between 0 and 1, where
0 indicates no overlap and 1 indicates complete overlap. We
computed the index of overlap separately for each taste to

determine to which extent spheres that showed a preference for
a specific taste at a low concentration showed a preference for
the same or a different taste at a high concentration. The overlap
between high- and low-concentration maps—obtained from the
cross-experiment classification—were extremely low, suggesting
distinct taste-related patterns as a function of stimulus intensity
(see Fig. 3A middle diagonal, bitter left insula: 0, bitter right
insula: 0, salty left insula: 0.03, salty right insula: 0, sour left
insula: 0.05, sour right insula: 0, sweet left insula: 0, sweet right
insula: 0.04; see SI Appendix, Fig. S4 for virtually identical results
at the single-subject level and also SI Appendix, Fig. S5, where we
explore further response characteristics of coactive spheres). In
addition, some spheres even switched their taste-specific pref-
erence (e.g., from bitter to sour as indicated by the off-diagonal
cells), yet no regularities could be observed in the switching
patterns (although note that the number of overlapping spheres
was relatively low).
Finally, we tested whether the few concentration-invariant

spheres anatomically group together in a particular region of the

Low concentrationHigh concentration
A B

One taste

Two tastes

Three tastes

Left Insula Left Insula Right InsulaRight Insula

Fig. 2. Subject-specific TIs. Scatter plots depict median TIs for all subjects (each dot represents a subject) separately for high (A) and low (B) concentrations in
insular cortex (see SI Appendix, Figs. S2 and S3 for gustatory ROIs). The y axis represents the median TIs for a specific taste or a compound of tastes. A TI of 0.75
indicates that the ER for the preferred taste was three times higher than the second-highest ER (see Methods for further details). The x axis indicates the
percentage of spheres which show a preferential tuning for a taste or a compound of tastes. Scatter plots, from top to bottom, represent percentage of
spheres tuned to single tastes (two top columns), double tastes (two middle columns), and triple tastes (two bottom columns); the left and right columns of
each taste configuration represent the left and right insula, respectively. Note that the x axis is scaled differently for single-, double- and triple-taste spheres
(top, middle, and bottom columns) due to the decreasing number of spheres responsive to double- and triple-taste compounds.
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insula. Since the insula contains many higher-order gustatory and
multisensory regions in addition to the primary GC (PGC), we
reasoned that concentration-invariant spheres might be clustered
in PGC. To test this, we first generated group-mean maps for
each taste. However, no location of insula contained concentration-
invariant spheres from more than three participants. Second, we
checked whether any particular subfield within the insula contained
most of the subject-specific concentration-invariant spheres using
the subfield definition provided by Fan et al. (21) including all six
subfields regardless of their putative functional properties. How-
ever, concentration-invariant spheres were present in all subfields
but were usually found in less than half of all participants per
subfield (SI Appendix, Fig. S6). Thus, we observed no anatomical
hotspot for concentration-invariant spheres.

Within-Experiments Decoding. In order to further confirm that the
topological distinction observed between low and high concen-
trations was consistent in each single experiment and not merely
due to task differences across the two experiments, we performed
four additional classifications (i.e., we separately decoded high
and low concentrations within each experiment). For this analysis,
the cross-validation was based on a different training and test set:
A leave-one-out procedure was used in which the classifier was
trained on three out of the four runs and tested on the remaining
one. As expected, we were again able to decode patterns of
spheres, here within the individual experiments, which were as-
sociated with each taste at high and low concentrations (Fig. 4 A
and B). In Fig. 3 B and C we show the index of overlap between
high and low concentrations separately for each experiment; as for
the cross-experiments maps (see Fig. 3A), we see very little
overlap between high- and low-concentration maps in the within-
experiment analyses.

Cross-Concentrations Decoding. Finally, in order to confirm whether
high- and low-concentration maps reflect truly distinct macroscopic
representations, we performed two additional classifications, one
per experiment. We trained the classifier on the low-concentration
tastes and tested on the high-concentration tastes, and vice versa,
for each experimental session.
We reasoned that if different spheres are coding for low and

high concentrations, we should observe a poor classification. In

line with our hypothesis and the previous decoding results, we
indeed observed only a small amount of spheres coding indis-
criminately for low- or high-concentration tastes (Fig. 4C): Based
on the tuning maps, in experiment 1, bitter exhibits only 0.1% of
narrowly tuned spheres, salty 0.5%, sour 0.15%, and sweet
0.17%; similar results were obtained in experiment 2, where
bitter exhibits 1.2%, salty 0.15%, sour 0.5%, and sweet 0.4%.
Together, this pattern of results is in clear disagreement with the
notion of broad concentration-invariant maps of taste qualities in
the human insula.

Discussion
The main objective of the present study was to test for task-
and concentration-invariant maps in human GC through an
information-based approach. We tested identical participants in
two distinct fMRI experiments on different days and successfully
decoded patterns of spheres associated with each specific taste
category in all participants across distinct behavioral tasks
and time, suggesting robust task-invariant taste representations
in all individual participants. Most importantly, low- and high-
concentration taste-selective representations showed very little
overlap, contradicting the notion of an exclusively topological
organization based on linguistic taste labels.
Significantly extending previous observations (20), we ob-

served patterns narrowly, but not exclusively, tuned to specific
tastes as well as patterns of more broadly tuned spheres in the
left and right insula at the group level and confirmed taste-
specific patterns when considering only one concentration. The
information provided by group-level maps may nonetheless
misrepresent the actual organization observable at the single-
subject level given the extreme variability of the insula’s func-
tional microstructure, as previously pointed out (13, 14). When
inspecting single-subjects’ maps, we observed patterns exhibiting
a stronger degree of spatial continuity for specific taste cate-
gories. It has to be noted, though, that such subject-specific
tuning maps showed a mixture of spheres narrowly tuned to-
ward one taste category and others exhibiting a broader tuning
while keeping a distinct preference for a specific taste.
As a consequence of the structural variability across individ-

uals, spheres equally tuned to two or three tastes were virtually
absent at the group level. Also, at the single-subject level, the
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Fig. 3. Coactive spheres across taste concentrations. (A) Heat maps depict the coactivity index of spheres based on data from narrowly tuned spheres for the
cross-experiment decoding. Coactivity is expressed as an index of overlapping spheres across concentrations, where 0 indicates the absence of overlap and 1
complete overlap. (B) Heat maps represent the coactivity index based on classifications for intensity judgments. (C) Heat maps represent the coactivity index
for pleasantness judgments. The main diagonal represents coactive spheres coding for the identical taste category across concentrations. Values outside the
main diagonal indicate a switch in taste preference as a function of concentration.
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number of spheres coding two tastes was much smaller than
spheres coding single tastes (Fig. 2) and were further reduced
when restricting the analysis to GC; likewise, only a few subjects
showed spheres coding for three different tastes and almost none
showed spheres with these response properties in GC. This lack
of patterns equally tuned to different tastes might be ascribed to
the stringent criteria that we adopted to identify tuning indices.
Alternatively, responses in multitaste spheres might be more
easily elicited by presenting compound tastes, which was not part
of our current experimental design. In line with our results,
however, Fletcher et al. (6) also observed single taste preferences
in the majority of neurons.
Considering topological theories, we do not find any evidence

for common maps across concentrations, although stable patterns
were observed for single concentrations, in line with previous re-
search (3, 13). Crucially, we observed a patchy organization in
insular cortex for different taste categories rather than a highly
ordered topography (3, 13). Thus, our data support a model of
distributed patterns of activity coding for different taste qualities
rather than a model of highly specialized maps on the macro-
scopic level. In particular, a distributed model seems to be sup-
ported by the distinct topological organization that we observed
in high- and in low-concentration maps (note that even for the
low-concentration tastes all behavioral responses differed from
each other, pointing to a sufficiently high concentration for

perception, in accord with the distinct patterns of neural activ-
ity). Especially at the single-subject level (SI Appendix, Fig. S4),
small subsets of the spheres that preferentially coded for a spe-
cific taste at low concentration changed their preference to a
different taste at high concentration, hence suggesting that taste
coding might dynamically change according to relevant features
and might be achieved through distributed representations rather than
rely exclusively on rigid functional maps on the macroscopic level.
Indeed, while only a small number of concentration-independent
taste-preferring spheres were found in our study, concentration-
dependent taste-preferring spheres were more common and
found in all participants. However, the exact spatial layout dif-
fered between participants and did not seem to follow a highly
organized topological arrangement.
One might argue that the difference in representation of low-

vs. high-concentration tastes might be due to the fact that par-
ticipants were less able to identify the low-concentration tastes
(relative to the higher ones). However, a confusion between
different low-concentration tastes should lead to less-stable
decoding patterns rather than the stable patterns for each low-
concentration taste observed here. Moreover, the lack of overlap
for low- and high-concentration patterns also suggests that the
coding mechanisms in the GC differs from other, topologically
ordered systems (e.g., vision): There, a change in stimulus in-
tensity may modulate the firing rate of identical neurons and

Intensity judgment Pleasantness judgment

High concentration

Low concentration

Left insula Right insula Left insula Right insula

Cross concentration decoding

A

B

C

Bitter
Salty
Sour

Sweet

Tuning Index

Fig. 4. Within-experiments tuning maps. (A) Flat maps depict narrowly tuned spheres in insular cortex for low-concentration tastes, separately for intensity
judgments (Left) and pleasantness judgments (Right). (B) Maps depict narrowly tuned spheres in insular cortex for high-concentration stimuli, for intensity
(Left) and pleasantness (Right) judgments, respectively. (C) Plots depict maps representing tuning indices for cross-concentrations decoding for each taste
category, separately for intensity (Left) and pleasantness (Right) judgments. Note that within concentration decoding produces consistent results (A and B),
whereas cross-concentration decoding (C) reveals almost no consistent clustering. Yellow lines depict GC as defined by Fan et al. (21); see SI Appendix, Figs. S2
and S3 for further information.
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classification accuracy (due to changes in signal-to-noise ratio)
yet should yield similar overall patterns, whereas with our gus-
tatory results tuning patterns stay robust (Fig. 2) but seem to
change location. In accord, a recent study conducted in mice (26)
targeted sensory neurons in the geniculate ganglion, hence fo-
cused on an earlier stage of taste processing, and found a robust
change in preferential tuning when taste concentration was sys-
tematically varied. Up to 51% of the narrowly tuned neurons
exhibited a taste-selectivity change from narrow to broad tuning,
suggesting that at least at an intermediate processing stage mice
brains rely on a pattern-coding mechanism.
Finally, the amount of overlapping spheres between high- and

low-concentration maps was consistently low. In some cases,
there were no overlapping spheres, thus suggesting that, at least
partially, two different underlying populations of neurons might
be preferentially coding for a taste category at high and low
concentrations. Our observations are also supported by a recent
study in rats (27), which shows that over a large number of
neurons only a “small” subset is able to code for both high and
low concentrations of sucrose. In accord, a monkey study (28)
observed that less than 1.5% of the recorded neurons in the
insular cortex exhibited a linear response as a function of the
increase in glucose concentration. Although those studies report
effects on the cellular level and might thus be difficult to directly
link to macroscopic fMRI results, it has nevertheless been shown
for the visual modality that orientation tuning can be picked up
with fMRI (29), even though the spatial resolution of fMRI was
much coarser than the size of orientation columns. Potentially, a
similar effect was observed here.
In previous human and animal studies, changes in concen-

tration have shown seemingly contradictory scenarios. On the
one hand, an increase in concentration led to monotonic in-
crease in activations (e.g., ref. 4), firing rate (e.g., ref. 28), and
event-related potential amplitudes (e.g., refs. 15 and 30). On the
other hand, several studies have shown complex nonlinear be-
haviors: High concentrations led to decrease in firing rate or
responses uniquely triggered by intermediate concentrations
(e.g., refs. 31 and 32). A recent univariate fMRI study by Canna
et al. (16) reported a nonlinear relation between blood oxygen
level–dependent response and concentration, with a reduction in
fMRI signals for middle and high concentrations. Our findings
are in line with the latter observation. A plausible model of the
neural underpinnings would either require a group of generalist
neurons responsive to multiple classes of tastes and different
ranges of concentrations, or alternatively a group of specialized
intermingled neurons, each tuned to specific tastes and con-
centrations, although note that these two models are not mutu-
ally exclusive (28, 31) and that our fMRI measure is on the
macro scale. Alternatively, changes in concentration could al-
ready affect peripheral coding of tastes, with enhanced cross-talk
between particular receptors at higher concentrations (e.g., bitter
and salty; see ref. 33). Although we did observe random changes
in taste selectivity with our macroscopic measure, these effects
might still contribute to our concentration-dependent effects. In
addition to these more physiological mechanisms which could in
principle account for the different patterns observed for high and
low concentrations a fourth alternative explanation could be
based on the coding of psychological factors such as palatability
and hedonic values (e.g., ref. 34). As shown by human and ani-
mal electrophysiology (see ref. 35 for review), taste detection,
discrimination (17), and concentration modulate very early
components, but palatability might reflect later components (36),
although recently Wallroth and Ohla (17) have suggested early
modulation of hedonic features. Thus, given that our activations
are convolved over an extremely long time window, the effects
that we are observing in low and high concentrations might be
caused by differences in palatability.

Thus, the organizational principle in GC could be based on
valence rather than physical stimulus properties. In contrast to
this notion, the largest taste-specific effects found here were
task-independent and did not vary with perceived pleasantness
(or intensity). Hence, we propose that the variation in neural
signaling—which was linked to valence in previous human im-
aging studies (13, 18)—may rather be based on changes of a
physical property (i.e., concentration) which governs perceived
pleasantness and significantly shapes informational content in
low-level GC.
In summary, our results demonstrate patterns in the human

insular cortex preferentially tuned to specific taste categories in
all single subjects plus some more broadly tuned patterns. Im-
portantly, variations in stimulus concentration reveal complex
changes of activity with little overlap between concentration-
dependent taste-specific representations. Together, these results
point at a distributed type of organization in GC with local taste
preferences on the macroscopic level and highlight that GC might
be coding a complex mixture of taste identity and concentration
rather than a representation based solely on taste identity.

Methods
Participants. Twenty-five healthy volunteers took part in two experiments;
one participant was excluded from the final analysis due to a technical
problem with taste delivery, hence resulting in 24 participants (16 female,
age: mean = 24.9 y, SD = 3.6). Participants fulfilled the following inclusion
criteria: no known allergies/sensitivity to the chemical solutions used in the
experiments, no respiratory tract infections in the 2 wk prior to the exper-
iments, no neurological and psychiatric disorders, no ongoing diets, no
regular intake of medication, no smokers. Additionally, participants were
asked to abstain from ingesting any food or caloric drink within the 3 h prior
to the experiments. In order to assess normal tasting and smelling abilities,
participants passed two clinical tests: Taste Stripes and Sniffin’ Sticks (Bur-
ghart Messtechnik). The study protocol was approved by the local ethics
committee of the Otto von Guericke University Magdeburg and all partici-
pants gave written informed consent.

Stimuli. We used four distinct tastants (bitter, salty, sour, and sweet) plus a
neutral solution (artificial saliva). Solutions were provided by the central
pharmacy of the medical faculty of Otto von Guericke University Magdeburg.
Stimuli were obtained from the following basis solutions (= 100%): 600 mM
NaCl (salty), 1 M glucose (sweet), 0.1 mM quinine hydrochloride (bitter), and
8 mM citric acid (sour). The neutral solution consisted of 5 mM KCl and
0.5 mM NaHCO3, the same chemical compounds as saliva (37), though at
lower concentration as O’Doherty et al. (37) based on own piloting. With the
exception of the neutral taste, all stimuli were presented at two different
concentrations (low and high), which were chosen via pilot testing in order
to guarantee a discernible difference between the two concentrations. The
resulting stimuli were obtained according to the following percentages of
basis solution dissolved with pure water (low/high): 10%/70% salty, 20%/
80% sweet, 20%/100% bitter, and 10%/80% sour.

Stimuli were delivered through an automated stimulation device: Gus-
tometer GU002 (Burghart Messtechnik). The Gustometer allows the control
of stimulus duration and concentration and massively reduces undesirable
somatosensory stimulation given that stimuli are sprayed via compressed air
directly onto the tip of the participants’ tongues. The Gustometer delivers
the stimulus at ca. 40 °C, resulting in approximately the body temperature of
the stimulus upon tongue contact. The device was controlled through
MATLAB 2012b (MathWorks, Inc.) via custom-made scripts and Psychophysics
Toolbox (38) running on a Windows 7 environment.

Stimuli were delivered to the participant through a pump held by a custom-
made Plexiglas scaffolding mounted above the head coil. Participants were
asked to protrude the tip of their tongue and enclose it with their lips in order
to prevent to ingest the liquid. None of the participants reported any physical
discomfort related to this procedure. The liquid was then absorbed by a tissue
placed below the participant’s mouth. This procedure was adopted to avoid
any motion- and swallowing-related artifacts and most importantly to isolate
taste-related activity while avoiding or holding constant other confounding
factors (e.g., temperature, stimulation of oral cavity, etc.).

Experimental Procedure. Participants took part in two scanning sessions with a
minimum time interval of 1 d and a maximum of 7 mo. Before and after the
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two scanning sessions participants—while lying in the scanner—were asked
to identify taste stimuli by choosing among five options presented on the
screen (bitter, neutral, salty, sour, and sweet) after each taste delivery,
resulting in four distinct identifications per taste category in total (see SI
Appendix, Fig. S1 A and B for descriptive results).

The main experiment consisted of four runs, each composed of 45 trials.
Each run consisted of sequences of stimuli comprised of all tastes in both
concentrations plus the neutral taste. All sequences had to fulfill three basic
constraints: 1) Each stimulus was presented five times within each run, 2) the
same stimulus could never be presented twice in a row, and 3) each com-
bination of two consecutive stimuli was presented at least once during the
entire experiment by using De Brujin sequences.

During scanning, each trial started by concurrently displaying the word
“Schmecken” (“Taste” in German) and spraying the tastant on the tongue
of the participant. The stimulation consisted of four distinct sprays (250 ms
each) interspersed with four pauses (250 ms each) for a total duration of 2 s;
each spray released 50 μL of tastant, summing up to a total of 200 μL per
trial. The tastant delivery was followed by a rating scale which assessed in-
tensity or pleasantness for the first and second experiment, respectively
(“Wie intensiv/angenehm empfinden Sie diesen Geschmack?”, “How in-
tense/pleasant does this taste?” in German). Participants were asked to
provide their rating on a 9-point scale ranging from 1: “No perception” to 9:
“Extremely intense” or “Extremely unpleasant” to “Extremely pleasant”
displayed on the screen. In order to respond, participants slid a green cursor
through the numbers of the scale by pressing two buttons with the index
and middle finger of the right hand. To confirm their choice, participants
pressed a third button with the thumb. For each rating scale, the green
cursor was randomly located on a different digit upon scale display to avoid
biasing. In case a participant was unable to provide an answer within 6 s
after the appearance of the scale, the response was considered invalid. Im-
mediately after the rating scale, the word “Rinse” was presented on the
screen together with 2 s of sprayed water to rinse the tongue from the
previous tastant. The following trial started after an intertrial interval of 2 s
(total trial duration 12 s).

Neuroimaging Data Collection. Scanning was conducted on a Siemens Prisma 3
Tesla system with a 32-channel head coil for signal reception. T1-weighted
structural images were acquired with an MPRAGE sequence using the fol-
lowing parameters: 1 × 1 × 1 mm3 voxel size, 256 × 256 × 192 matrix, 2.82-ms
echo time, 2.5-s repetition time, 1.1-s inversion time, 7° flip angle, 140-Hz
per pixel bandwidth, 7/8 partial Fourier, parallel imaging with a GRAPPA
factor of 2, and 5:18-min scan duration.

For functional imaging we opted for a combination of reduced field-of-
view (rFOV) gradient echo planar imaging (EPI) and parallel imaging in order
to minimize signal dropout and geometric distortion. This technique is part
of the Siemens “Advanced fMRI” work-in-progress software. During each of
the four functional runs we acquired 280 volumes using the following pa-
rameters: 24 slices, 1.8-mm slice thickness, 0.9-mm interslice gap, ascending
slice excitation order, 135- × 240-mm2 rFOV, 1.25- × 1.25-mm2 in-plane voxel
size, 30-ms echo time, 2-s repetition time, 90° flip angle, 1 mT/m·ms z-shim,
0.73-ms echo spacing, and GRAPPA factor of 2. The transversal slice block was
tilted 20° with respect to the anterior commissure–posterior commissure line.

To facilitate the registration and normalization of the rFOV we addi-
tionally acquired 10 whole-brain EPI volumes. In order to keep geometrical
distortions within the rFOV part of the whole-brain dataset identical to the
functional scans the shim settings were copied and the FOV andmatrix size in
phase direction as well as the GRAPPA factor were doubled. A Siemens
autoalign algorithm was used to automatically select the identical slices
during the second scanning session.

Data Analysis
Behavioral Data. Ratings of intensity and pleasantness were analyzedwith the
same statistical procedure: We first computed the median across all of the
ratings separately for each experimental condition. Each dataset was then
subjected to a repeated-measures ANOVA with the factors taste category
(bitter, salty, sour, sweet, and neutral) and intensity (high and low). Post hoc
t tests were subsequently performed to statistically test potential differences
among taste ratings. In order to correct for multiple comparisons, Bonfer-
roni correction was applied.

Brain–behavior correlations were computed using Pearson’s correlation
coefficients and Bonferroni corrections. Effects of taste category and in-
tensity were analyzed using repeated measures ANOVAs with the factors
hemisphere and taste category, separately for low and high concentrations.
All analyses were performed by using the R package stats v3.6.0 within the
R environment (v3.4.4).

fMRI Data Preprocessing. fMRI analysis was conducted within a computational
cluster in a Debian environment; analysis tools were obtained through
NeuroDebian (39).

Both datasets were subject to the identical preprocessing procedure: Prior
to any preprocessing, four dummy scans collected at the beginning of each
scanning session were removed from each dataset. Motion correction was
performed by realigning, each volume of both experiments to the first
volume of experiment 1 via a rigid body transformation (MCFLIRT, FSL 5.09).

For noise reduction, time series were temporally filtered by means of a
band-pass filter (cutoffs: 4 Hz and 150 Hz). Additionally, each volume was
spatially smoothed by applying a full width at half maximum Gaussian
kernel of 4 mm via Nilearn 0.5.0 (40).

Multivariate Pattern Analysis. Decoding analysis was performed with PyMVPA
(41) and custom Python scripts. Prior to the multivariate pattern analysis
(MVPA), each time series was fitted on a voxel-by-voxel basis with a general
linear model (GLM) using Nipy 0.4.2 (42).

The GLM was composed of five “taste” regressors (neutral, bitter, salty,
sour, and sweet; trial onset aligned with start of taste delivery, duration 2 s)
convolved with a canonical hemodynamic response function with temporal
derivatives. Motion estimates (six degrees of freedom) were included as
additional nuisance regressors. In order to subtract potential artifacts com-
mon to each taste condition, GLM parameters for each taste were con-
trasted runwise against the neutral condition and the resulting t-contrasts
were used as features for classification.

We then applied a sparse multinomial logistic regression classifier (SMLR)
(23) and a leave-one-out cross-validation procedure. The type of folding
used for cross-validation changed according to the aim of the specific clas-
sification performed. For the cross-experiment classification, the SMLR was,
in turn, trained on one experiment and tested on the other one; for the
cross-concentration classification, the SLMR was trained on low-concentration
data and tested on the high-concentration data, and vice versa. For the
within-experiment classifications (separate classifications for high and low
concentrations for both experiments), the SMLR was, in turn, trained on three
out four runs and tested on the remaining run. Classification was restricted to
voxels in the insula using the brain parcellation provided by Fan et al. (21),
with a 50% cutoff criterion for the probability maps. Insular ROIs included the
following left and right subregions: dorsal dysgranular insular (dId), dorsal
agranular insular (dla), ventral agranular insular (vla), dorsal granular insular
(dlg), ventral granular insular (vlg/vId), and hypergranular insular (G) cortex.

Decoding was performed through a searchlight approach (24) with a
sphere’s radius of four voxels. The primary outcome of the classification
analysis were the taste-categorywise probability estimates of the SMLR
classifier, for each searchlight sphere and each data fold.

MVPA Statistical Analysis. In order to assess the degree of evidence for a
response to a specific presented taste, we computed the following ratio for
each taste and searchlight sphere:

PEðTÞ=medðPðTÞÞ

for each taste category across all data folds.

ERðTÞ= PEðTÞ
maxðPEð∼ TÞÞ,

where PE(T) denotes the median of the SMLR probability estimates P(T) for
one specific taste across all trials in which this particular taste was presented.
PE(∼T) is the median of probability estimates for the same taste based across
all trials in which this particular taste was not presented (i.e., a different
taste was presented). The rationale adopted for the ER resembles the con-
cept of the Bayes factor, by comparing the alternative PE(T) and null PE(∼T)
hypothesis to assess the goodness of the model of interest.

ER computation yields a single map for each taste. In total, four ERs, one
for each taste, were calculated per data fold. Importantly, if two tastes in-
dependently express a consistent and high probability for a given sphere,
both of themwill have a high ER, and thus ER does not bias the results toward
narrow tuning. ERs simply provide a necessary metric to ensure the reliability
of our classification independently for each test. The obtained maps were
then statistically evaluated at the group level following a bootstrapped
permutation analysis proposed by Stelzer et al. (43), implemented in
PyMVPA, and briefly summarized here: In order to assess the null distribu-
tion of results, we computed 50 additional “chance” result maps for each
participant, using the identical analysis setup and data folding strategy,
while permuting the taste labels within the training data. For group-level
inference, all individual maps were spatially transformed and resliced, via
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FSL FLIRT, from native image space into Montreal Neurological Institute
space with a 2-mm isotropic voxel size.

The empirical group-average map was thresholded using a variable vox-
elwise cutoff, corresponding to P < 0.001 of the distribution of results from
10,000 bootstrap samples of group average maps, computed from randomly
drawn “chance” maps, one for each participant. Likewise, group-level clus-
ter size was statistically tested (P < 0.05) based on the distribution of cluster
sizes across the 10,000 bootstrap samples, after applying the same P < 0.001
voxelwise threshold to all “chance” group average maps.

Quantifying Tuning Maps. In order to quantify the degree of selectivity for
each taste or a combination of taste categories, we computed an index of
preferential tuning for each sphere. Tuning indices (TIs) were based on ERs
and calculated by using the single-taste ERs (e.g., salty) or by combining the
ERs of different tastes (e.g., bitter and salty). Importantly, TIs were calculated
both on the group level and single subjects’ statistical maps according to the
following equation:

TIðTÞ= minðERðTÞÞ
maxðERðTÞÞ+maxðERð∼ TÞÞ,

where ER(T) indicates the ER for a single taste or a combination of tastes of
interest and ER(∼T) indicates the ERs of the remaining tastes. In case of
single taste tuning, min(ER(T)) and max(ER(T)) are simply ER(T). The choice
of taking the minimum of ER(T)—in the numerator—and maximum of ER(T)—
in the denominator—becomes relevant only when we want to evaluate

the selectivity of a combination of tastes (e.g., bitter and salty). Selecting the
smaller ER(T) in the numerator and the bigger ER(T) in the denominator
prevents that two highly different ER values would produce a TI above 0.5,
which would indeed provide a misleading characterization of that sphere’s
preference. TIs guarantee that a given sphere can be considered as prefer-
entially tuned to a taste or a combination of tastes only if the TI is bigger
than 0.5. Hence, they provide a rather conservative measure (range 0 to 1)
either in favor—values above 0.5—or not in favor of the selected taste—
values below 0.5. Note that TIs of 0.75 (the average value across subjects; see
Fig. 2 and SI Appendix, Figs. S2 and S3) indicate that the highest ER was three
times higher than the second-highest ER. Additionally, to avoid selecting ex-
tremely low but significant ERs, we selected spheres with ER(T) equal or larger
than 3 for at least one taste. This threshold was motivated by the analogy
with the Bayes factor, where values equal or larger than 3 are considered
indicative of a moderate evidence (44). While this thresholding ensures the
identification of spheres reliably tuned to a particular taste and thus dimin-
ishes the chance of false positives, it may sometimes lead to abrupt changes in
TIs within a sphere. However, lowering the ER threshold level to 2.5 did not
lead to a significant increase in coactive voxels within the same test category.

Data/Code Availability. The datasets/code supporting the current study have
been deposited in a public repository (https://osf.io/2m5sk/).
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